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Secondary Deuterium Kinetic Isotope Effects on the possibilities for bringing theory and experimental findings into

Isomerization of the Trimethylene Diradical to closer dialogue. Related experimental and theoretical work on

Cyclopropane photochemical decarbonylations of ketoffé8 and on tetra-
methylene diradical intermediaf82* soon followed.
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The trimethylene diradicall¢dg) has long been considered a 1-d 1-ds 1-d
possible or even a likely short-lived reactive intermediafe.
It has been frequently invoked heuristically in attempts to  Published ab initio computations using DZP-TCSCF wave
interpret the thermal isomerization of cyclopropane to propyl- functions provided energies, molecular geometries, and vibra-
ene? the photochemical decarbonylation of cyclobutandioss tional force fields for the singlet trimethylene intermeditey-
of nitrogen from 1-pyrazolirfeand from trimethylenediazerié, int (of Cs point-group andC,, molecular symmeti#) and for
and the stereomutations of isotopically-labeled cycloprop#hés. the two transition structures leading from it to cyclopropane,
Many different experimental and yet indirect approaches have one ofC; point-group symmetry (for the conrotatory path) and
provided ever more refined information bearing on the chemical one of Cs (for the disrotatory pathi314
propensities of the trimethylene diradical, and an equally

extensive theoretical campaign has been waged to pin down its H H H H H H
structural characteristics and modes of reactitAty® H\A/H H.., (’Q/H H.., (SH
H O H H oA H H
CH,CH,CH>
1 1-dg-int 1-dg-C, (ts) 1-dy-C,(ts)
-do

Late in 1994, Pedersen, Herek, and Zewail reported an From _these force _fields were calculated _the vibratio_nal
experimental determination of the lifetime of the singlet frequencies for the trimethylenes and the various deuterium-
trimethylene diradical generated photochemically from cyclobu- l2beled trimethylenes. The frequencies were all scaled by a
tanonel” Using femtosecond pump and probe pulses, and massfactor of 0.9 and then usec_i to calculamkp values over arange
spectrometric and molecular beam techniques, they determinedf temperatures for reactions proceeding frdatrimethylene
that the trimethylene intermediate formed from cyclobutanone ntermediates tak-cyclopropane species using a conventional
decayed rapidly, with a lifetime of only 128 20 fs. This real- apprqach for the semlclassg:al rate constant ratios, with the aid
time detection of the transient trimethylene diradical, a signifi- the BigeleiserrMayer equation and the TelleRedlich theo-
cant experimental achievement, validated the trimethylene rem?3 These calculatell/kp values are presented in Table 1.

diradical intermediate hypothesis and pointed toward fresh From them, the secondary deuterium isotope effects on overall
relative isomerization rates and relative lifetimes were predicted
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Table 1. Calculatedk./ko Ratios for Isomerizations al-Trimeth- intermediate to cyclopropane through multiple exit charifiéfs
ylene Diradical Intermediated-di-int) to d-Cyclopropanes by Way and the BigeleisenMayer semiclassical model for kinetic
of Transition Structured-d-Cy(ts) and1-d-C(ts) isotope effects are in evident accord with the experimentally
temp (K) determined relative lifetimes; this result leaves little role for a
trans. structure 500 700 900 1100 kinetically significant isomerization of the trimethylene inter-

mediate to propylene, for this process should involve a

1-d-Cy(ts 1.015 1.015 1.015 1.014 ; ; Ch e o ;
1-d4-C1§tsg 1367 1359 1357 1356 su_bstantlal primankq/kp effect?® one which is simply not in
1-dg-Cy(ts) 1.394 1.386 1.383 1.382 evidence. _ . . . o
1-d,-Cy(ts) 0.973 0.988 0.995 0.999 Doubleday’s calculatiort§ again provide a telling additional
1-d,-C(ts) 1.320 1.314 1.312 1.311 perspective: at a total energ)(that is 10 kcal/mol above the
1-ds-Cq(ts) 1.294 1.307 1.314 1.318 trimethylene intermediate, isomerization with formation of

propylene is predicted to be a very minor contributor, less than
Table 2. Calculatedk./k, Ratios for Isomerizations af-di-int to 0.1% as significant as isomerization with formation of cyclo-
d-Cyclopropanes propane. Even whek is 30 kcal/mol above the trimethylene
intermediate, the rate constant for propylene formation is

temp (K) calculated to be only 3% of the total rate constant for formation
intermed. diradical 500 700 900 1100 of cyclopropane through both conrotatory and disrotatory
1-dy-int 1.015 1.015 1.015 1.014 processe%

1-dg-int 1.367 1.359 1.357 1.356 The precise character of the trimethylene intermediate is of
1-dg-int 1.394 1.386 1.383 1.382 course not revealed unambiguously through the agreement
between calculated relative lifetimes and measured lifetimes

Table 3. Calculated and Observed Lifetime Ratios tpTrimeth- shown in Table 3. The local energetic minimum in the many-
ylene Diradical Intermediates dimensional potential energy surface for the trimethylene
intermed. compared calcd obsd intermediate is quite shallow, and the diradical may exist in a

- - variety of conformational forms characterized by different
7(1-z-int)/z(1-Oo-int) 1.01-1.02 1.06+0.11 C—C—C bond angles and HC—C—H dihedral angles without
zgggmgggggmg 122:%3; 1.50+£0.14 any substantial variations in energy. For such a molecular entity,

i : nearly a “twixtyl”, “a molecule or a range of molecular
2For do-, dz-, andds-trimethylene diradicals, experimentgti) values conformations” having no minimum on a potential energy
are 122+ 8 fs, 129+ 10 fs, and 183t 12 fs (Herek, J. L.; Zewall, A. surface but “which operationally behaves as a true intermedi-

H. California Institute of Technology, 1996, Unpublished results). ate” 26 isomerization rates and lifetimes may be dictated more

by the requirement that various vibrational modes must attain

balance is computed to be 78:22; at higher energies, disrotatoryappmpr.iate phase re_Iati(_)nships with o_ne_another rather than by
paths increase in relative importance. any all-important activation energy criterion.
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